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Abstract

We report on a novel forecasting method based on
nontinear Markov modelling and canonical variate
analysis, and investigate the use of a prediction al-
gorithm to forecast conditional volatility. In par-
ticular, we assess the dynamic behaviour of the
madel by forecasting exchange rate volatility. It is
found that the nonlinear Markov model can fore-
cast exchange rate volatility significantly better
than the GARCH(:,1}) model due to its flexibil-
ity in accommodating nonlincar dynamic patterns
in volatility, which are not well captured by the
linear GARCH({1,1) model.

1 Introduction

In finance, volatility is a key measure of risk and
of the relative change in the price of a security,
such as stock, stock index, or derivative, over time.
Thus, the greater is the price variation, the greater
is volatility. As the true underlying volatility of a
security is unobservable, it must he estimated. Al
though there are different expressions for volatility,
the definition used in finance is typically the stan-
dard deviation of the returns of a security over a
given period.

Volatility is an essential input to the optimisation
of financial models describing the expected risk-
return trade-off. For example, it is a crucial in-
put to mean-variance portfolic optimisation mod-
els and for the pricing of both primary and sec-
ondary derivative securities. In general, the higher
is the volatility, the greater is the value of an op-
tion. Thus, it is essential for practitioners to be
able to model the volatility dynamics of financial
securitios adequately,

Any model that attempts to predict velatility will
needd to incorporate the following important dy-
namics in returns:

1. Financial markets frequenily experience large
and sudden price movernents., A recent exam-
ple of extreme price moverents is the October

1997 stock “miarket crash originating inAsiar

On 28 October 1997, the Hang Seng Stock
Index {HSI) dropped by 14.7%, the German
Stock Index {DAX) by 7.2%, the Standard
& Poor’s 500 Composite Index (S&P500) by
5.0%, and the Japanese Stock Index (Nikkei
225) by 4.4%. A consequence of these extreme
observations is the fat-tailed distribution of re-
turns.
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There iz overwhelming evidence that the tail
behaviour of equity returns evolves over time.
In particular, absoclute returns have significant
positive serial correlation over long lags, im-
plying that they have long term memory. This
is known as volatility clustering, whereby large
(small) absolute returns are more likely to he
followed by large {small) absolute returns than
by small (large) absolute returns. In ofher
words, volatility is positively correlated over
time.

3. Equity returns are highly asymmetric. In par-
ticular, negative shocks to returns {(bad news)
iead to larger volatility than equivalent posi-
tive shocks to returns (good news) (Koutmos
{1998}).- This is the so-called “leverage effect”.

4. The persistence of shocks to volatility is asym-
metrically related to the size of the shocks.
When shocks to returns are high (low}, trends
persist for shorter (longer) periods (Engle and
Lee [1893]), which means that the market re-
verses itself,

Hence, the implication for practitioners is that -
nancial market volatility is predictable.

The most commonly used model to forecast
velatility is the generalised autoregressive condi-
tional heteroskedastic GARCH(1,1) model of En-
gle {1982} and Bollerslev [1986]. Its popularity is
due to the fact that it (i) captures the persis-
tence of volatility; (i) accommodates the fat-tails
of the returns distribution; and (iii} is simple, and
alse mathematically and computationally straight-

Clorward, Howevey, the GARCH 'model imposes a™

symmetrical influence of lagged residuals on cur-
rent volatility, thereby failing to accommodate sign
asymmetries. .. Moreover, high and low. volatility.
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shocks have the same rate of persistence. Consid-
ering these shortcomings, more flexible methods of
modelling volatility are in demand.

In this paper a nonlinear approach is taken which
provides flexibility in its ability to model temporal
asymmetries as well as persistence. Although it has
been argued that improved in-sample fit does nof
necessarily lead to improved out-of-sample fore-
casting ability, unless the non-lincarities are re-
alised in the latter period {Terasvirta and Ander-
son [1892]}, we argue that non-linear models will,
on average, vield improved forecasts.

This paper is organised as follows. Section 2 de-
scribes the nonlinear Markov modelling approach.
In Section 3, we give a detailed outline of the im-
plementation of the nonlinear Markov modelling
and forecasting algorithm. Section 4 describes the
CGARCH(1,1) model. Section 5 presents the data
analysis while Section 6 analyses the empirical re-
sults. Some concluding remarks are given in Sec-
tion 7.

2 Nonlinear Markov model-
ling

We introduce a nonlinear Markov modelling ap-
proach based on canonical variate analysis (UVA),
which was first developed by Hotelling {1936]. The
method we use for constructing models from time
series with non-trivial dynamics is an extension of
the work published by Larimore [1891], and in-
volves the analysis of canonical correlations and
variates from the past and future of a process. Al-
though CVA theory was originally developed for in-
dependent and identically distributed (i.i.d.) ran-
dom variables, we apply CVA to time series ex-
hibiting nonlizear correlations.

Constder a nonlinear, time invariant, strict sense,
discrete-time Markov process with no deterministic
input to the system. Let this purely stochastic
process be observed at equal “sampling intervals”
to yield a time series given by

(1)
where y; has zero mean and constant variance o7,
Associated with each time ¢, define a past vec-
tor py, given as an m-dimensional uniform em-
bedding of the scalar time series . However,
there exist more sophisticated embedding proce-
duares (Judd and Mees [1998]). Thus, consider &
non-uniform embedding introduced by the lag vec-
tor I = (ly,1,...,1m), & vector of positive integers,
and obtain the past vector p; as

y:!gzml,ﬁ,...N]

Dt = (yt—llgytmlga o--zif}twlm)v

given by

@

The future vector f; of finite window length n is

)

Given the two vectors p; and fy, pe is the set of
predictor variables and f; s the set of variables to
be predicted.

The fundamental characteristic of a nonlinear,
time invariant, strict sense discrete-timme Markov
process of finite state order is its finite dimensional
state s;. This is approximated by an r-dimensional
reduced memory vector my, given as a nonlinear
function ¢ of the past, that is,

(4)

State s, has the property that the conditional prob-
ability of the future f, given the past is identical
to the conditional probability of f; given s,, that
is,

St == TNy = (ﬁ(pf)

P{filp:) = P{fi]s:). {5)

Thus, cnly a Gaite number » of nonlinear combi-
nattons of the past is relevant to the future.

The primary effort in calculating an optimal non-
linear predicticn f; of the future f, involves the
determination of r nonlinear combinations of the
past pe. The optimal prediction f; is a linear com-
bination of the r-dimensional reduced memory vec-
tor m;, where the nonlinear function ¢ of the past
¢ s chosen such that the optimal linear predictor

Ji{my) minimizes the prediction error,

Now select & class of nonlinear functions f;,1 =
1,2, ...,k of the past p; to obtaln a set of basis
functions m; to approximate the future; that is,

Te = { fi{pe)s folpe), oo Felpe)) (6)

where & is the number of ponlinear basis functions.
We use radial basis functions as basis functions
fi of the past p, to approximate the future f, for
CVA. The standard radial basis function is defined

as
s

filp) =@ (M)

T

(7)

for suitably chosen centres ¢;, radii ry, and radial
basis function @.

The predominant effort in estimating the optimal
basis functions f; which are nonlinear functions
of centres ¢; and radil r;, now involves the ap-
plication of a selection algorithm {Judd and Mees
11995]). Construct a class of parameterised non-
linear autoregressive models called pseudo-linear
models from the embedding py; that is,

<§Ptmffi§)+€£
L
S gy

for some selection of nonlinear functions f;, un-
known parameters X;, unknown i.i.d. random vari-
ates ¢, and o given number k. The choice of &

iw]

k k
Yi = Z)\:‘fz‘(??t) + & = z}n‘@
t==1
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is arbitrary, and k has to be large enough to de-
scribe the data sufficiently well from the measured
system.

The basis set, the functions fi|i=12,. 4, i ob-
tained as a set of basis functions that approximates
the data y;. In the following, we use the set of
functions filjm1,2,.. 4 85 a set of basis functions
me = (f1, fo, - fi), given in Eq. 6, to predict the
future f.

The optimal prediction problem is solved by a near
maximum likelihood system identification proce-
dure (Larimore [1991]), as follows. Assuming a
linear relationship describing the optimal predic-
tion of f; from #y, consider the following model

Bmy + e
Ami{pe) = &(pe)

It
Ty = {(9)
where memory my is an intermediate set of r vari-
ables that may be fewer in number than 7. Term
e, with covariance matrix e is the error in the
linear prediction of fi from a; given by matrices
A and B. For simplicity, denote the matrices Ad,
containing the intermediate set of r variables my,
E containing the prediction-error variables e, F
the future vectors fy, and II the basis set w;. Fur-
thermore, define the covariance matrices of the
basis set, the future, and the prediction error by
Tan = HHT, Sfp = SFFY and B, = +EET,
respectively.  The cross-covariance matrix of the
basis set and the future is given by ¥.; = %HF T

A maximum likelihood estimator of A, B, and 2.,
is naturally defined by the conditional likelihood
function p(F|II; A, B, Zee)- of the future F! given
the basis set II. Maximum likelihood estimation
(MLE) involves substituting Z.., and estimating A
and B as the matrices that maximize the likelihood
for the given basis set and future of the observed
process.

CVA Theorem. Let Sy, (mxm) and Xypinxn),
the covariance matrices of the basis set and the fu-
ture, respectively, be nonnegative definite (satisfied
by covariance matrices). Then there exist matrices
J{m x m) and L{n »x n) such that

‘jzﬂ‘ﬂ"]T = I'r-:rrf
LEs " = I, (10)
J’EMLT = D =diag{v, Yar o7 0o, D)

where rrp; = rank(E.), rp; = rank({Zg), and ¥
are the canonical correlations. Matrix 1. denotes
the r »x r identity matrix.

CVA is a generalised singular value decomposition
which transforms basis set #; and future f; to pair-
wise correlated 1.1.d. random variables. Matrices J

“and Loare obtained viaa singular value decompo-

sition {SVD) of the cross-covariance matrix Ly,
After subsiitution of the CVA into the log of the

lHikelihood function p{ Fili; 4, B, Bee ), substitution -

of 3g., and maximisation over A and B, we obtain
the following estimates for 4:

A= (I, 04 {11)

with A the frst r rows of J, and for 5:

B={I. )L {12)

with B the first r rows of L. Subsequently, we
obtain for M:

M= (L 0)JI (13)
or for mmstant time {:
e = (L. 0)Jm,. (14}

The critical problem now is to determine the rank
r of memory M, f.e. the optimal dimension r of
M to predict F. Matrix M contains the optimal
rank r predictors which are the first r canonical
variables 2y, 9, ..., &, Where the optimal rank ¢ is
obtained from the number of dominant canocnical
correlations v; (Larimore [1991}). The number of
dominant canonical correlations, i.e. the optimal
rank r, is chosen as the one which gives the best
prediction.

3 Implementation of fore-
casting

In practice, given the time series ;t;tigt:l,g’,__ ] sam-
pled at equal “sampling intervals®, the standard
prohlem is to construct a model and then to pre-
dict one-step ahead to obtain the future = 11-
The medelling problem is sclved by a near max-
imun likelihood system identification procedure
{Larimore [1991]) of the system, given in Eq. &
Thus, one obtains matrix A, matrix 3, and a non-
Hinear function ¢ which is a nonlinear crmbedding
ms{p;) of the past. Assume the past embedding py
simply given as

PN = (YN YN 15 s YN 1m ) {15)
where m is the embedding dimension. Substituting
the past embedding py into Eq. 9, we obtain the
future time series

Fre = (Gnsr, Gnaz, o UN4n) {16)

as

fn = BAny(pn) = Bd{pw). (17)

Hence, future §|p=n41 is the first element iy
of the fibure vector fy. o o
In the following, we outline the implementation of
the CVA prediction algorithm in detail.



1. Given the time series Ytl[t=1,2,... ], determine
the optimal embedding of the past p,, i.e.
embedding dimension m and lag vector | =
{li,lg, ... L), construct the embedding, and
obtain the embedding matrix P.

2. Select the k best fitting functions f; from ran-
domly generated radial basis functions to oh-
tain an optimal nonlinear embedding. To en-
sure a good selection of basis functions, this
procedure is repeated i-times and we obtain
centres ¢; and radii r; of the selected basis
functions which form the nonlinear embedding
matrices Iy Iy, - II,. Finally, embedding
matrix IT of size v is obtained from the non-
linear embedding matrices [I;, a constant term
¢ and linear embedding matrix P, i.e.

- IL).

3. Given a future window length n, generate the
future matrix F.
4. Solve the following system

F:“:.
M =

BM + E
ATl (19}
using CVA. Matrices J and I are obtained
via an SVD of cross-covariance matrix T, I
Then, calculate estimates of A = (I 0}J,
B = (1. 0)L, and subsequently M = (f,. 0).JII.
The rank r of memory M, i.e. the optimal di-
mension 7 of M to predict F', is chosen as the
one which gives the best one-step ahead pre-
dictions.

Build the embedding vector 7wy from the past,
using parameters ry, ¢;; and e. Then, esti-
mate the future vector [y using model param-
eters A and B. Subsequently, predict one-step
ahead and obtain the estimated future UN+1-

o

4 The GARCH(1,1) model

The AR(1)-GARCH(1,1) model has the following
structure:
(20)

and the conditional variance of ¢, is generated by

Te = fob Ty + &

£ = ?}'\.ﬁ‘flt (21)
By = w+ e+ Bhi, (22)

where 7, is a sequence of normal 1.id. random
variables (shocks), with zero mean and unit vari-

ance. Sufficient conditions for positivity of the con-

~ ditional variance and the GARCH({1,1) process to
exist are that w > 0, o > Gand 4 > 0.

Several statistical properties have been established
for the GARCH({1,1) process in order to define the
unconditional moments of {g,} (Bollerslev [1986]).
First, the second moment of {,} exists if (a+4) <
1. This condition must be met in order for the
GARCH(1,1) process to be strietly stationary and
ergodic, and E(e?) < cc.

Second, a necessary and sufRcient condition for the
existence of the fourth moment of ¢, is (302 +2a3+
#%) < 1 (Bollerslev [1986]). The normality condi-
tion is made in order to define the likelihood func-
tion, but is not required for asymptotic results.

5 Data analysis

This paper considers the nonlinear Markov mod-
elling approach and the AR(1)-GARCH(1,1}
model for returns. The models are evaluated using
the noon (Pacific time) British Pound-U.S. Dollar
(GBP/USD) spot exchange rates, obtained from
the Pacific Exchange Rate Service.

A rolling window of 500 trading days was used to
estimate the parameters of the model and generate
the one-step ahead forecasts. The forecasts were
compared with the realised volatility using the fol-
lowing definition;

or =y - g1, (23)
We applied the nonlinear Markov modelling ap-
proach to the volatility sequence o,. To reduce
the additive noise component, we pre-filtered the
volatility series by using a linear filter with eXpo-
nentially decreasing filter coefficients, that is,

=t
m= D Oy, (24)
Futm fr b1
where fi is the filter length and Ufjléjz}_,g,__f‘,_] are
the filter coefficicnts obtained as follows:
1 .
w; = exp(—j/&) {25)
by ;W

with filter parameter £ = 5 and filter length fr=
20. Then we build the nonlinear Markov model
on ¥ = 600 trading days. The parameters for
modelling and prediclion were set as follows:

o lag vector [ = (1,2,.-.,10}, so that
Pr = (yzmla?ft-?yyt—Saytwdayt-—.ﬁryt—ugg?lt-l21
Ye16, Yo—20, Yt—26, Yt-a2, yt——zzo};

¢ number of best fitting functions k = 50;
o size of éﬁli)éridiﬁg matrix v = 180;

o future window length n = 90.
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6 Empirical results

Fable 1 provides a summary of the descriptive
statistics for the unconditional distribution of the

GBP/USD spot exchange rates.

Table 1. Summary statistics of the GBP/USD
Spot Exchange Rates {1/6/88 to 13/5/92).

Mean -1.373e-5
Median 1.804e-4
o £.990e-3
Maximum(c) 4.083
Minimum({c) +3.954
SR{c) 8.047
# Obs.> 2/3/4/50  52/12/2/0
Skewness -0.301%
Kurtosis 4.608%
B 123.03*

*Significant at the 5% level. SR is the Studentised Range and
is calculated as {max-min}/e. JB is the Jarque-Bera tost statis-
tic for normality of the returns, which follows a x* distribution
with two degrees of freedom.

The Jarque-Bera Lagrange Multiplier {LM) statis-
tic indicates that the time series I8 not normally
distributed. While the skewness of the returns dis-
tributions is small, the kurtosis is large, implying
that much of the departure from normality s due
to leptokurtosis.

Table 2 reports for the various time series the mean
values of the parameter estimates of the AR(1)-
GARCH{1,1) model, their standard deviations and
their mean t-ratios.

fable 2. Menn {of 300 estimations) of the parameters
estimates of the AR{1)-GARCH{1,1) model for GBP/USD
Spot Exchange Rates {1/6/88 to 13/5/92).

Parameter Estimate . (L-ratio)
it 3.566e-4 (1.254)
P 41127 (2,315}
w 1.515e-8%  (1.818)
a 0.682* (3.187)
8 0.389*%  {29.397)
Diagn.(m:) :

Skewness -0.374*

Kurtosis 4,283*

IB 47.87%

Q1) 12.37

Q(12)? 13.35

*Significant at the 5% level. The robust t.ratios are those of
Bollerslev and Wooldridge [1992], and are designed to be insen-
sitive to non-normalily, especially the presence of cutliers. I8
is the Jarque-Bera LM test statistics for normality of nf. which
is asymptotically x° distributed with two degrees of freedom
under the null hypothesis of normality. Q{12) is the Ljung-Box
test statistic for serial correlation in 7, with 12 lags. {12)°

is the Ljung-DBox test statistic for an ARCH process based on

nf. "Under the r;u!l. hypothesls of l.m.corr.f;i.ated and conditional

homoscedasticity, respectively, both test statistics are asymp-

totically x* distributed with 12 degrees of freedom.

The diagnostic tests indicate that no serious
model misspecification is observed, but that the
GARCH(1,1) model cannot account for all the lep-
tokurtosis in the returns. Also, none of the pa-
rameter estimates violates the second and fourth
moment regularity conditions. Hence, the model
provides an adequate description of the data. The
paramneter estimates imply that the GBD/USD
returns are significantly positively correlated and
that, on average, there is a rather weak reaction of
the conditional volatility to shocks {ARCH effect)
but with a long-term memory (GARCH effect}.

Table 3 reports the various forecast errors of the
models.

Table 3. Mean of the one-step ahead forecast errors of the CVA
and AR{1)-GARCH(1.1) mode! for GBP/USD Spot Exchange
Rates {1/6/88 to 13/5/92)

CVA CARCH{L,1)
ME -1.31e-d  (4.83e-3) 1.58¢-3 [4.88e-3j
MAE 3.63e-3  (2.98e-3) 4.1Te-2  {3.19e-3)
MSH 2.33e-5  {4.97e-3)  2.63e-5  (4.32e-3)
MSE(+) 1.27e-3  (1.33e-5)  2.00e-5  {2,07e-5)
MSE(-) 3.83¢-5  {7.24e-5) 4.040-53  ({7.33e-5)
RMSE 4.83e-3 §.12e-3
MAPE 74.40 (52.04) 77.32 (54.78)
MWAPE 52.04 (94.76) 54.78 {76.52)
PTTEST -8,00" -1.29
Over{%} 384 72.4
R2(%) 3.77 2.10

* Significant at the 5% level. Values in parentheses are stan-
dard errors. Adjusted R* is the regression. coeflicient of de-
termination, adjusted for the number of independent variables.
Over(%) is the percentage of forecasts that overpredict realised
volatility, MSE(+) and MBE(-) are the MSE measures for the
positive and negative forecast errors, respectively,. PTTEST is
the Pesaran and Timmermann test statistic, which is asymp-

totically normally distributed.

Based on the MAE, MSE and RMSE measures,
the CVA model provides significantly improved (up
to 10%) forecasts relative to GARCH(1,1). Unlike
GARCH(1,1}, the CVA model is not highly hiased.
In particular, the CVA modet overpredicts volatii-
ity less than 60% of the time, compared to more
than 70% for GARCH(1,1).

The Pesaran and Timmermann test statistic,
which computes a non-parametric association be-
tween the forecasted and realised volatility, implies
that there is a greater association for CVA between. -
forecasts and realised volatility. No significant as-
sociation is found for the GARCH(1,1) forecasts.
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The advaniages of the preater Hexibility of the
CVA model is particularly evident when trying
to model both large and small volatility shocks,
When GARCH(1,1) is applied to data that in-
clude sudden and large shocks to volatility, the pre-
dicted conditional variance persists strongly and
inaccurately. In contrast, the CVA model accu-
rately models the much smaller persistence of large
shocks to volatility, This is evident from the MSE
measure for positive forecast errors, which is sub-
stantially smaller (more than 40%) for the CVA
mode} than for GARCH(3,1).

A simple gauge of the predictive power of the
model is the adjusted R?, which is obtained by
regressing the ex-post volatility on the forecasts.
These regressions are based on observed absolute
returns as a measure of the realised volatility, Ta-
ble 3 shows that the adjusted B2 is substantially
larger for the CVA model than for GARCH(1,1}.

7 Conclusion

The focus of this paper has been to obtain models
that accurately reflect the dynamics of the system.
Thus, a model should not only fit the sample data
and forecast well, but it should alse have dynamical
behaviour similar to that of the measured system.
As applied o financial exchange rate time series,
the algorithm presented captures the dynamics of
& complex system and also gives reliable one-step
ahead predictions for short data sets.
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